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Summary: The complete relative and absolute stereochemistry of furaquinocins A-G, a family of cytotoxic 
antibiotics, have been assigned via a combination of X-ray crystallography, NMR analysis of the derived Mosher 
esters, and chemical correlation. 

Komiyama et al. at the Kitasato Institute recently reported the isolation, physicochemical, and biological 

characteristics of furaquinocins A (1) and B {2). 1 These novel antibiotics, obtained from the fermentation 

broth of Streptomyces sp. KO-3988, exhibited strong in vitro cytotoxicity against HeLaSs cells at 

concentrations of 3.1 and 1.6 pg/mL, respectively. I,2 Six additional congeners, furaquinocins C-H (3.8), 

were subsequently isolated from the same species. 3 More detailed biological evaluation then revealed that the 

furaquinocins also possess antihypertensive, anticoagulative, and antiplatelet activity.4 A related 

furanonaphthoquinone (9) was very recently isolated from Streptomyces cinnamonensis ATCC 15413.5 

although no bioassay results have as yet been reported. Whereas the connectivilies of the furaquinocins were 

deduced via extensive spectroscopic293 and physicochemical analyses, 1 v3 their stereostructures have remained 

unknown. As a prelude to total synthesis, we describe herein the complete relative and absolute 

stereochemistries of the furaquinocins. 
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Extensive decoupling and 2-D NMR experiments by amura et al.2 demonstrated that furaquinocins A and B 

differ only in the configurations of the trisubstituted olefin. In addition, the orientation of the C(2) and C(3) 

methyl groups was tentatively assigned as trans, based upon the observation of a 12% NOE between H(2) and the 
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C(3) methyl of O-methyl derivative lo.* These conclusions, as well as Figure 1 

the previously unassigned relative stereochemistry of the C(10) 

hydroxyl and C(3) methyl group, were unequivocally secured via 

single-crystal X-ray analysis of furaquinocin A (1) (plates from ethyl 

acetate-hexanes, mp 177-180 “C). The ORTEP plot is shown in Figure 

$j/$+: 

1.6 
0 

1 Furaquinccin A 

Having established the relative configurations at the 2, 3, and 10 III 

positions, we turned to determination of the absolute stereochemistry of 

furaquinocins A and B. To this end, 1 was converted to the tris I/?)- and 

(S)-Mosher ester derivatives 11 and 1 2.7-g NMR analysis revealed 

that the C(3) methyl resonated further upfield in 12 (0.77 ppm) than 

in 11 (1.11 ppm). Moreover, H(ll), H(ll’), and H(12) appeared 

further upfield for 11 than for 12. Based upon the Mosher ester 

model,7s10 these data permit assignment of the R configuration at C(10) (Figure 2). Similar analysis likewise 

established the 10(R) configuration for furaquinocin B (2).7-g 

Figure 2 
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Extended Newman projection of tris (S)-Mosher 

ester 12, with the R configuration at C(10). 

With the relative and absolute stereochemistry of furaquinocins A and B in hand, we next investigated 

chemical correlations of A with congeners D (4) and G (7). A was first transformed to D by removal of the 

C(l5) allylic hydroxyl (Scheme 1). Specifically, treatment of 1 (2.2 mg) with diphenyl disulfide (9.6 equiv) 

and tributylphosphine (10.2 equiv) in dry DMF (0.2 mL) afforded allylic sulfide 13 as the only isolated 

product (yellow oil; 51% yield). g,ll Reduction with excess tributyltin hydride’* and AIBN (benzene, reflux) 

then furnished semisynthetic furaquinocin D (ca. 0.5 mg), identical with natural 4 by 1H NMR (500 MHz), IR, 

UV, and HRMS. Although we isolated insufficient semi-synthetic material for a precise determination of the 

specific rotation, the sign was clearly the same as reported for the natural product {lit3 [c#~ -95” (c 0.53, 

CHCls)}. The absolute stereochemistry of natural D was then confirmed via preparation and NMR analysis of the 

Mosher esters.‘-9 We then sought to convert furaquinocin A (1) to furaquinocin G (7) (Scheme 1). Fetizon 

oxidationt3 of A (5.5 mg) gave a yellow oil identical with 7 in all respects9 {33% yield, obs. [a]‘# +5” (c 

0.02, CH30H); lit.8 [a]bQ+12” (c 0.33, CHsOH)}, accompanied by lactone 14. We did not attempt to optimize 

the latter transformation. 
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At this juncture, we prepared furaquinocin E (5) from 6 (2) via a three-step protocol (Scheme 2). 

Treatment of 2 (13.8 mg) with benzoyl chloride (2.2 equiv) and excess triethylamine in dry THF at O-5 “C 

furnished the 4,14-dibenzoyl derivative 15g in ca. 90% yield. Dehydration of the tatter with the Martin 

sulfurane14 (4 equiv, THF, O-5 “C) afforded exclusively the lO(E),12(EJ diene 169 (Jlo,~l= 15.4 Hz) 

(17% isolated yield). Interestingly, none of the iO(Z),12(E) diene was observed under these conditions. 

Debenzoylation then led to 5, identical in all respects with natural furaquinocin E. Thus, furaquinocin E shares 

both the relative configurations at C(2,3) and the absolute stereochemistry of furaquinocins A and B. 

Scheme 2 
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All that remained was elucidation of the stereostructures of furaquinocins C (3) and F (6), via C(l0) 

deoxygenation of D (4) and B (2), respectively. Unfortunately, several attempts to derivatize 2 and 4 for 

deoxygenation were unsuccessful. We therefore devised an alternative correlation of furaquinocin C with F, vja 

selenium(lV) oxide-mediated allylic oxidation of the C(14) methyl group. Specifically, treatment of 3 (6.1 

mg) with selenium dioxide (4 equiv) in dry 1,4-dioxane for 30 min at room temperature, followed by 

quenching with excess sodium borohydride and flash chromatography gave semisynthetic 6 as the major isolable 

product in 19% yield {[a]” o -8.3” (c 0.01, CHaOH); lit.3 [a]‘$ -13” (c 0.35, CHaOH)), identical with 6 by 

1 H NMR (500 MHz), IR, UV, and HRMS. Although selenium oxidation afforded predominantly the E allylic 

alcohol, as expected,15 the stereochemical features of both 3 and 6 otherwise remained undefined. A cis 

relationship between H(2) and the C(3) methyl of furaquinocin C was deduced from the observation of a 5.1% 
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NOE between these groups. Finally, C and F were assigned the same absolute configuration as A, B, and D, 

buttressed by the observation that furaquinocins A-F all display negative optical rotations at the sodium D line. 

Scheme 3 

3 Futaquinocin C 6 Furaquintin F 
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